Cloning, expression, and functional characterization of human cyclooxygenase-1 splicing variants: evidence for intron 1 retention.
نویسندگان
چکیده
Recently, a splicing variant of cyclooxygenase (COX)-1, arising via the retention of its intron 1, was identified in canine. It was called COX-3 and was reported to be differentially sensitive to inhibition by various nonsteroidal anti-inflammatory drugs (NSAIDs) as well as acetaminophen (Chandrasekharan et al., 2002). However, the existence of an orthologous splicing variant in human tissues has been questioned due to a reading frame shift and premature termination. In this study, we first confirmed the existence of intron 1-retained COX-1 in certain human tissues at both the mRNA and protein levels. Molecular biology studies revealed that three distinct COX-1 splicing variants exist in human tissues. The most prevalent of these variants, called COX-1b1, arises via retention of the entire 94 base pair (bp) of intron 1, leading to a shift in the reading frame and termination at bp 249. However, the other two variant types, called COX-1b2 and COX-1b3, retain entire intron 1, but they are missing a nucleotide in one of two different positions, thereby encoding predicted full-length and likely COX-active proteins. Functional studies revealed that the COX-1b2 is able to catalyze the synthesis of prostaglandin F2alpha from arachidonic acid with Km and Vmax values of 0.54 microM and 3.07 pmol/mg/min, respectively. However, no significant differential selectivity for inhibition by selected NSAIDs was observed. Accordingly, we conclude that intron 1-retained human COX-1 is not likely to be the therapeutic target of acetaminophen or a candidate of COX-3.
منابع مشابه
Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development
Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...
متن کاملBacterial Expression and Functional Characterization of A Naturally Occurring Exon6-less Preprochymosin cDNA
Chymosin (Rennin EC 3.4.23.4), an aspartyl proteinase, is the major proteolytic enzyme in the fourthstomach of the unweaned calf, and it is formed by proteolytic activation of its zymogene, prochymosin.Following the cloning of synthesized cDNAs on mRNA pools extracted from the mucosa of the calf fourthstomach, we have identified an alternatively spliced form of preprochymosin ...
متن کاملMorphine regulates expression of μ-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the μ-opioid receptor (OPRM1) gene via miR-103/miR-107.
The μ-opioid receptor (MOR-1) gene OPRM1 undergoes extensive alternative splicing, generating an array of splice variants. Of these variants, MOR-1A, an intron-retention carboxyl terminal splice variant identical to MOR-1 except for the terminal intracellular tail encoded by exon 3b, is quite abundant and conserved from rodent to humans. Increasing evidence indicates that miroRNAs (miRNAs) regu...
متن کاملMorphine Regulates Expression of m-Opioid Receptor MOR-1A, an Intron-Retention Carboxyl Terminal Splice Variant of the m-Opioid Receptor (OPRM1) Gene via miR-103/miR-107 s
The m-opioid receptor (MOR-1) gene OPRM1 undergoes extensive alternative splicing, generating an array of splice variants. Of these variants, MOR-1A, an intron-retention carboxyl terminal splice variant identical to MOR-1 except for the terminal intracellular tail encoded by exon 3b, is quite abundant and conserved from rodent to humans. Increasing evidence indicates that miroRNAs (miRNAs) regu...
متن کاملGenome-Wide Data-Mining of Candidate Human Splice Translational Efficiency Polymorphisms (STEPs) and an Online Database
BACKGROUND Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS) discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 315 3 شماره
صفحات -
تاریخ انتشار 2005